Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract—Intuitively, the more complex a software system is, the harder it is to maintain. Statistically, it is not clear which complexity metrics correlate with maintenance effort; in fact, it is not even clear how to objectively measure maintenance burden, so that developers’ sentiment and intuition can be supported by numbers. Without effective complexity and maintenance metrics, it remains difficult to objectively monitor maintenance, control complexity, or justify refactoring. In this paper, we report a large-scale study of 1252 projects written in C++ and Java from Google LLC. We collected three categories of metrics: (1) architectural complexity, measured using propagation cost (PC), decoupling level (DL), and structural anti-patterns; (2) maintenance activity, measured using the number of changes, lines of code (LOC) written, and active coding time (ACT) spent on feature-addition vs. bug-fixing, and (3) developer sentiment on complexity and productivity, collected from 7200 survey responses. We statistically analyzed the correlations among these metrics and obtained significant evidence of the following findings: 1) the more complex the architecture is (higher propagation cost, more instances of anti-patterns), the more LOC is spent on bug-fixing, rather than adding new features; 2) developers who commit more changes for features, spend more lines of code on features, or spend more time on features also feel that they are less hindered by technical debt and complexity. To the best of our knowledge, this is the first large-scale empirical study establishing the statistical correlation among architectural complexity, maintenance activity, and developer sentiment. The implication is that, instead of solely relying upon developer sentiment and intuition to detect degraded structure or increased burden to evolve, it is possible to objectively and continuously measure and monitor architectural complexity and maintenance difficulty, increasing feature delivery efficiency by reducing architectural complexity and anti-patterns.more » « lessFree, publicly-accessible full text available April 28, 2026
-
Abstract—Intuitively, the more complex a software system is, the harder it is to maintain. Statistically, it is not clear which complexity metrics correlate with maintenance effort; in fact, it is not even clear how to objectively measure maintenance burden, so that developers’ sentiment and intuition can be supported by numbers. Without effective complexity and maintenance metrics, it remains difficult to objectively monitor maintenance, control complexity, or justify refactoring. In this paper, we report a large-scale study of 1252 projects written in C++ and Java from Google LLC. We collected three categories of metrics: (1) architectural complexity, measured using propagation cost (PC), decoupling level (DL), and structural anti-patterns; (2) maintenance activity, measured using the number of changes, lines of code (LOC) written, and active coding time (ACT) spent on feature-addition vs. bug-fixing, and (3) developer sentiment on complexity and productivity, collected from 7200 survey responses. We statistically analyzed the correlations among these metrics and obtained significant evidence of the following findings: 1) the more complex the architecture is (higher propagation cost, more instances of anti-patterns), the more LOC is spent on bug-fixing, rather than adding new features; 2) developers who commit more changes for features, spend more lines of code on features, or spend more time on features also feel that they are less hindered by technical debt and complexity. To the best of our knowledge, this is the first large-scale empirical study establishing the statistical correlation among architectural complexity, maintenance activity, and developer sentiment. The implication is that, instead of solely relying upon developer sentiment and intuition to detect degraded structure or increased burden to evolve, it is possible to objectively and continuously measure and monitor architectural complexity and maintenance difficulty, increasing feature delivery efficiency by reducing architectural complexity and anti-patterns.more » « lessFree, publicly-accessible full text available April 30, 2026
-
To overcome the reversible nature of low-Reynolds-number flow, a variety of biomimetic microrobotic propulsion schemes and devices capable of rapid transport have been developed. However, these approaches have been typically optimized for a specific function or environment and do not have the flexibility that many real organisms exhibit to thrive in complex microenvironments. Here, inspired by adaptable microbes and using a combination of experiment and simulation, we demonstrate that one-dimensional colloidal chains can fold into geometrically complex morphologies, including helices, plectonemes, lassos, and coils, and translate via multiple mechanisms that can be varied with applied magnetic field. With chains of multiblock asymmetry, the propulsion mode can be switched from bulk to surface-enabled, mimicking the swimming of microorganisms such as flagella-rotating bacteria and tail-whipping sperm and the surface-enabled motion of arching and stretching inchworms and sidewinding snakes. We also demonstrate that reconfigurability enables navigation through three-dimensional and narrow channels simulating capillary blood vessels. Our results show that flexible microdevices based on simple chains can transform both shape and motility under varying magnetic fields, a capability we expect will be particularly beneficial in complex in vivo microenvironments.more » « less
An official website of the United States government
